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Abstract- The effect of electric and magnetic node arrangement on the

dispersion characteristics of the Multiresolution Time Domain technique is

investigated in this paper. It is first noted that by multiresolution analysis

principles, introducing one wavelet level refines the resolution of a numer-

ical scheme based on scaling functions only, by a factor of two. However,

the dispersion analysis of recently formulated MRTD schemes shows that

this is not always the case. The apparent contradiction is resolved by indi-

cating that MRTD does achieve its predicted dispersion performance under

certain meshing conditions that are outlined here.

Keywords- Multiresolution Analysis, numerical dispersion, MRTD,

FDTD.

I. INTRODUCTION

The Finite Difference Time Domain (FDTD) technique of-
fers a mathematically straightforward and inherently versatile
method for the analysis of arbitrary electromagnetic geometries,
at the expense of computational resources. Indeed, since Yee’s
scheme [1] is second order accurate only, and sensitive to nu-
merical dispersion, a dense discretization of at least ten, but
usually twenty five points per wavelength is necessary for the
extraction of a convergent solution. Therefore, the FDTD treat-
ment of either electrically large geometries or fine detail struc-
tures typically results in a computationally intensive, memory
and execution time consuming calculation.

As an alternative to the conventional FDTD, several high
order numerical techniques have been developed [2], aiming
at the discretization of electromagnetic structures at rates that
may even approach the Nyquist limit. Recently, wavelet based
time domain methods employing Battle - Lemarie, Daubechies,
biorthogonal and Haar wavelets have been presented, for exam-
ple in [3]-[6] and references therein. It is noted that the introduc-
tion of one wavelet level in a numerical scheme formulated with
scaling functions only, is expected to bring about a refinement
in its effective resolution by a factor of two (“dyadic” property),
as a direct consequence of Multiresolution Analysis principles
[7]. Nevertheless, in several MRTD dispersion studies [3], [8],
the addition of wavelets gives rise to dispersion phenomena that
are not consistent with this expectation.

In this paper, the source of the aforementioned contradiction
is investigated and the conditions under which MRTD schemes
attain their expected dispersion properties are sought for. Such
a study is particularly important, for the reason that a future di-
rection of current wavelet research efforts is the development
of microwave CAD oriented algorithms. This motivates the as-
sembly of theoretical tools that enable a reliable prediction of
the accuracy properties of an MRTD type of scheme, for a given
number of wavelet levels and an arbitrary basis.

II. ELECTRIC AND MAGNETIC NODE ARRANGEMENT AND

EQUIVALENT GRID POINTS IN MRTD

In order to facilitate the presentation of the concepts intro-
duced in this work, the application of the MRTD technique to
the simple case of a one dimensional system of Maxwell’s equa-
tions :
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is considered. The field update equations are derived by the
Method of Moments, in the sense of [3], after a spatial expan-
sion of electric and magnetic field components in scaling and
wavelet functions (up to an order rmax ) is assumed. In the fol-
lowing expressions, �m(x) = �(x=�x �m) denotes the scal-
ing function that defines the m-th MRTD cell, the cell size being
�x and  rm;p = 2r=2  (2r(x=�x�m)� p) denotes the p-th
wavelet of order r within that cell (with p = 0; � � � 2r � 1). A
temporal basis of pulse functions hn(t) = h(t=�t � n) is also
used (as in [3]). Our treatment is not limited with respect to the
wavelet basis, the latter being defined by its scaling and mother
wavelet functions, �(x) and  (x) respectively. The electric and
magnetic field expansions are of the form :
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where n0 = n + 1=2, and m0 = m + s. Thus, while half
a time step offset between the update of electric and magnetic
field terms is kept (following the FDTD example), the offset of
electric and magnetic field cells is left as a parameter s, under
investigation. Most MRTD studies, with the notable exception
of [9], use s = 1=2. Fig. 1 depicts the equivalent grid points
that are generated by this convention, henceforth referred to as
formulation I, in a 0-order Haar MRTD scheme (one wavelet
level). Within each cell, the field values at the “equivalent grid
points” are deduced by adding and subtracting the scaling and
wavelet terms. It is observed that the electric and magnetic
equivalent nodes are now collocated. This kind of mesh con-
densation happens independently of the basis that is employed
and is connected to the dyadic nature of the wavelet transforms
of most studies. However, were the resolution refined by a factor
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Fig. 1. Electric / magnetic field equivalent grid points for 0 order Haar MRTD,
under formulation I.

of two, the offset between these nodes ought to be also divided
by two, instead of becoming zero. For a general order scheme,
this can be attained by defining s = 1=2rmax+2, that is, linking
s to the maximum wavelet resolution rmax. Since the use of
wavelets up to order rmax renders the effective cell size equal to
�x=2rmax+1, this shift corresponds to half an effective cell [10]
offset. This convention will be hereafter mentioned as formula-
tion II.

III. DISPERSION ANALYSIS

A. Battle - Lemarie basis
Following formulation II, the well known W-MRTD scheme

of [3] (including Battle-Lemarie scaling and zero order wavelet
functions) is rederived (for equations (1)-(2)) and the disper-
sion properties of its two versions are detemined and compared.
Hence, while in [3], the magnetic field basis was composed of
functions of the type �m+ 1

2

,  m+ 1

2

, the formulation considered
here uses accordingly the basis �m+ 1

4

,  m+ 1

4

(rmax = 0). The
discretization of (1), (2) via Galerkin’s method leads to finite
difference equations of the generic form :
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and of similar form for the magnetic field. The indicated sum-
mations are performed over the “stencil” of the method, de-
noted here by p0. The stencil coefficients for the electric and
magnetic field ��= E , ��= E , ��= H , ��= H are not symmetric and
some sample values of them are given in Table I. It is noted that
� E(p) = ��E(p� 1), � H(p) = ��H(p� 1):

Subsequently, a dispersion analysis is carried out for W-
MRTD under both formulations, by applying the method that
is presented in [11]. The resultant dispersion relationships
connecting the numerical wavenumber k to the numerical fre-
quency ! are plotted in Fig. 2, where the normalized quantities
X = k�x and 
 = !�t have been used. For comparison pur-
poses, the dispersion curves for the so-called S-MRTD (utiliz-

TABLE I

STENCIL COEFFICIENTS FOR THE W-MRTD SCHEME

(FORMULATION II)

p �
�
E
(p) �

�
E
(p) �

 
E
(p)

-5 -5.596e-02 -7.607e-02 +5.864e-02
-4 +0.1051694 +0.1403895 -9.579e-02
-3 -0.2015483 -0.2474964 +0.2343052
-2 +0.4196303 +0.3727935 -0.3023901
-1 -1.3241406 -0.4279963 +1.9484456
0 +0.7974678 +0.3594450 +4.3699193
+1 +0.3590904 -0.2313141 -0.1205340
+2 -0.1816382 +0.1289039 +0.2431251
+3 +9.570e-02 -6.952e-02 -7.818e-02
+4 -5.103e-02 +3.727e-02 +5.605e-02
+5 +2.729e-02 -1.996e-02 -2.585e-02
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Fig. 2. Dispersion curves for W-MRTD (formulations I, II), S-MRTD and
FDTD.

ing Battle - Lemarie scaling functions only) and FDTD are also
shown. The analytical dispersion curve is indicated as linear.
All curves were derived for stencil p0 = 9 and Courant num-
ber � = (1=

p
��)�t=�x = 0.15925. Defining the turning point

of the dispersion curve as the effective Nyquist limit of the cor-
responding scheme, it is observed that for S-MRTD this limit
is X = �, for W-MRTD under formulation I it is X � 1:5�,
while for W-MRTD under formulation II it is X = 2�, which
shows that the latter does attain the expected refinement in res-
olution by a factor of two. This is also reflected on the stability
condition for the two schemes : For S-MRTD, this condition
is � <= 0:6371 = �S�MRTD , for W-MRTD, formulation I
� <= 0:4384 = �W�MRTD�I and for W-MRTD, formulation
II � <= 0:3185 = �W�MRTD�II . Hence :

�S�MRTD

�W�MRTD�I
� 1:4534

�S�MRTD

�W�MRTD�II
� 2:0 (5)

Thus, the previous conclusion is verified from a stability per-
spective : The addition of wavelets under the node arrangement
of formulation I brings about a mesh refinement of less than 1.5,
while formulation II leads to a full exploitation of the wavelets,
doubling the resolution of S-MRTD.

B. Haar basis
The relative simplicity of the Haar basis allows for the deriva-

tion and dispersion analysis of an arbitrary order scheme applied
to equations (1), (2). The update equations of the scheme are
derived by applying the Method of Moments, considering field
expansions according to formulations I, II. As an example, the
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Fig. 3. Dispersion curves for Haar MRTD of orders 0 to 3, under formulation I.

update equation for the electric field scaling terms assumes the
form :
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The dispersion analysis of the two formulations leads to the fol-
lowing closed form expressions : For formulation I,

1
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and for formulation II :
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The resultant curves are depicted in Figures 3, 4 for � =
0:05625. It is thus shown that MRTD under formulation I,
always finds itself one level of resolution below the expected,
while MRTD under formulation II exhibits a consistent disper-
sion performance. For example, for rmax = 0, (7) yields the
FDTD dispersion equation, corresponding to the scaling cell res-
olution (the addition of wavelets does not change the accuracy
of the scheme). In this case, actually, the MRTD scaling and
wavelet update equations are uncoupled and whatever improve-
ment in accuracy is solely due to the application of source or
boundary conditions [8].

IV. NUMERICAL RESULTS

A. Battle - Lemarie basis
A simple numerical experiment that validates the dispersion

analysis of the two W-MRTD schemes is carried out in this sec-
tion. In particular, a computational domain defined by 200 Bat-
tle - Lemarie scaling cells terminated into hard boundary con-
ditions (implemented by image theory) is solved as a one di-
mensional cavity. Then, the resonant frequencies fn = 0:15 n
[GHz] of the cavity, corresponding to normalized wavenumbers
Xn = 0:01�n are numerically determined, from time domain
data of 32768 time steps. For both schemes, a time step equal
to 0.5 of their stability limit is used, for the results to be di-
rectly comparable. The stencil value p0 is set to 12. Results
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Fig. 4. Dispersion curves for Haar MRTD of orders 0 to 3, under formulation
II.

TABLE II

RESONANT FREQUENCIES (IN GHZ) FOR THE 1-D CAVITY

PROBLEM AND RELATIVE ERROR FOR W-MRTD (I,II)

Xn fn W-MRTD R.E. W-MRTD R.E.
� Form.I (%) Form.II (%)

0.2 3 3.0018 +0.0600 2.9989 -0.0037
0.4 6 6.0351 +0.5850 6.0035 +0.0058
0.6 9 9.1345 +1.4944 9.0139 +0.1544
0.8 12 12.4179 +3.4825 12.0071 +0.0592
1.0 15 15.6897 +4.5980 15.0979 +0.6527
1.2 18 19.2975 +7.2083 18.2749 +1.5727
1.4 21 22.6670 +7.9381 21.5725 +2.7262
1.6 24 24.3158 +1.3158 25.1689 +4.8704
1.8 27 18.0221 -33.2515 29.1010 +7.7815

for wavenumbers ranging from 0 to 2� are listed in Table II. It
is clearly shown that W-MRTD under formulation II is consis-
tently more accurate than formulation I, except for wavenum-
bers around the effective Nyquist limit of formulation I, where
its error changes sign and therefore assumes values close to
zero. However, from that point on, the accuracy difference be-
tween the two schemes becomes significant. For example, when
X = 1:8�, formulation I yields an alias frequency, presenting
a relative error of -33.2515 %. As discussed in [12], this fre-
quency is a product of inaccuracy, not a spurious mode, as was
previously misinterpreted [3].

Furthermore, to demonstrate the equivalence of the proposed
W-MRTD scheme to the S-MRTD based on Battle Lemarie scal-
ing functions of double resolution (that span the so called space
V1 = V0 �W0), the previous cavity domain is solved with the
latter scheme and the relative error in the deduced frequencies
for wavenumbers � to 2� is plotted in Fig. 5. A good agreement
between the two schemes under comparison is observed. It is
noted that any (numerically small) discrepancies represent the
effect of the boundary condition modeling and the truncation of
the scheme (by the choice of a finite stencil).

B. Haar basis
Extending the arbitrary order Haar MRTD scheme to two di-

mensions, the FDTD and MRTD (formulations I, II) solutions
for the TEn;m modes of a square air cavity structure of dimen-
sions 32 cm� 32 cm are compared. The Haar MRTD schemes
of orders 2 by 2, 3 by 3 and 4 by 4, corresponding to meshes of
4� 4, 2� 2 and 1� 1 scaling cells are applied to the structure,
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Fig. 5. Relative errors in resonant frequency for W-MRTD I, II and S-MRTD
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TABLE III

RESONANT FREQUENCIES (IN GHZ) FOR THE 2-D CAVITY

PROBLEM AND RELATIVE ERROR (DEGREES OF FREEDOM =
32� 32)

(n;m) fn;m MRTD R.E. MRTD R.E.
form.I (%) form.II (%)

(1,1) 0.6629 0.6620 -0.1358 0.6627 -0.0030
(2,1) 1.0482 1.0451 -0.2957 1.0466 -0.1526
(2,2) 1.3258 1.3233 -0.1886 1.3240 -0.1357
(3,1) 1.4823 1.4714 -0.7353 1.4793 -0.2024
(3,2) 1.6901 1.6827 -0.4378 1.6878 -0.1361
(3,3) 1.9887 1.9818 -0.3470 1.9853 -0.1709

along with a 32� 32 cell FDTD. The hard boundary conditions
are modeled in MRTD by applying image theory for the update
of magnetic field coefficients at the boundaries, in the sense de-
veloped in [13]. Under these gridding conditions, our dispersion
analysis yields that FDTD and MRTD (formulation II ) have the
same accuracy, as they use the same number of degrees of free-
dom (thresholding is not applied in this study). This has been
also numerically confirmed ; the resonant frequencies deduced
by FDTD and all MRTD schemes of formulation II, assume the
same arithmetic values, some of which are given in Table III.
However, formulation I shows a significantly worse accuracy,
following that of an FDTD scheme of a 16 � 16 mesh. All
simulations were carried out at 0.9 of the stability limit for each
scheme. It is thus concluded that Haar MRTD under formulation
II attains its expected resolution, just as the dispersion analysis
showed and in contradiction to formulation I. Finally, Fig. 6 de-
picts the electric field spatial distribution of the TE32 mode of
the cavity as resolved by a 1�1mesh of an order 4 by order 4 (5
wavelet levels per direction) Haar MRTD scheme (formulation
II).

V. CONCLUSIONS

A necessary condition for the development of MRTD
schemes with a consistent accuracy performance has been de-
rived by means of dispersion analysis and confirmed by numer-
ical experiments. It is also noted that under the same condi-
tion, the two different methods of deriving wavelet schemes pre-
sented in the microwave literature so far [3], [4] become equiva-
lent. Thus, this work contributes to the fundamental understand-
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Fig. 6. Electric field distribution for TE32 mode obtained by an order 4 by
order 4 Haar MRTD (form. II), with a 1 by 1 mesh.

ing of the numerical properties of wavelet schemes and their
connection to Multiresolution Analysis principles.
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